题目内容
下面立体图形的左视图为( )
A. B. C. D.
如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
的结果在哪两个连续整数之间( )
A. 1与2 B. 2与3 C. 3与4 D. 4与5
如图,AD是△ABC的中线, , , .
求:(1)BC的长;(2)sin∠ADC的值.
一次体检中,某班学生视力情况如下表:
视力情况
0.7以下
0.7
0.8
0.9
1.0
1.0以上
人数所占的百分比
5﹪
8﹪
15﹪
20﹪
40﹪
12﹪
从表中看出全班视力情况的众数是________.
威远人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?
某校九年级一班共40名学生,需要参加体育“四选一”自选项目测试,如图是该班学生所报自选项目人数的扇形统计图,请根据图中信息,完成下面各题:
(1) 图中“投掷实心球”所在扇形对应的圆心角的度数为 度;该班自选项目为“投掷实心球”的学生共有 名;
(2)在自选项目为“投掷实心球”的学生中,只有1名女生.为了了解学生的训练效果,将从自选项目为“投掷实心球”的学生中,随机抽取2名学生进行投掷实心球训练测试,请用树状图或列表法求所抽取的2名学生中恰好有1名女生的概率.
如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).
(1)当t=3秒时,直接写出点N的坐标;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?
如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是( )
A. 2m B. 3m C. 6m D. 9m