题目内容
| DE |
| AB |
| 1 |
| 2 |
| 1 |
| 2 |
分析:根据三角形中位线定义可得D、E是△ABC的中位线,再根据三角形中位线定理可直接得到答案.
解答:解:∵AD,BE是两条中线,
∴DE是△ABC的中位线,
∴DE=
AB,
∴
=
,
故答案为:
.
∴DE是△ABC的中位线,
∴DE=
| 1 |
| 2 |
∴
| DE |
| AB |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:此题主要考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
练习册系列答案
相关题目