题目内容

如图,点A、B、C、D在⊙O上,四边形ABCO是菱形,则∠ADB的度数是________.

30°
分析:首先在优弧上取点E,连接AE,CE,由四边形ABCO是菱形,利用菱形的性质与圆周角定理,即可得∠AOC=∠ABC=2∠E,AB=BC,又由四边形ABCE是⊙O的内接四边形,可得∠ABC+∠AOC=180°,即可求得∠E的度数,继而求得∠ADB的度数.
解答:解:在优弧上取点E,连接AE,CE,
∵四边形ABCO是菱形,
∴∠AOC=∠ABC=2∠E,AB=BC,
==
∵四边形ABCE是⊙O的内接四边形,
∴∠ABC+∠AOC=180°,
∴3∠E=180°,
∴∠E=60°,
∴∠ADB=∠E=30°.
故答案为:30°.
点评:此题考查了圆周角定理、圆的内接四边形的性质以及菱形的性质.此题难度适中,注意准确作出辅助线,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网