题目内容
【题目】根据测算,1粒芝麻重0.000004克,数0.000004可用科学记数法表示为 .
【答案】4×10﹣6【解析】解:0.000 004=4×10﹣6 , 所以答案是:4×10﹣6 .
【题目】已知x1 , x2是一元二次方程x2-4x+1=0的两个实数根,则x1x2-x1-x2的值等于( )A.-3B.-5C.3D.5
【题目】高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.
(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);
(2)求这条公路在免疫区内有多少千米?
【题目】化简3a-[-2b+2(a-3b)-4a]=________
【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD
(1)求证:BD平分∠ABC;
(2)当∠ODB=30°时,求证:BC=OD.
【题目】一只电子蚂蚁在数轴上从-3出发向左运动2个单位长度到点A处,再向右运动4个单位长度到点C处.(1)画出数轴标出A、C所表示的数;(2)这只电子蚂蚁一共运动多少个单位长度?
【题目】先化简,再求值:[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y,其中x=1,y=4.
【题目】小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小红用刻度尺量了这个四边形的四条边长,然后告诉小明,纸板是标准的平行四边形,小红得出这个结论的依据是__________.
【题目】在平面直角坐标系xOy中,对于P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).
(1)点(,1)的限变点的坐标是 ;
(2)判断点A(﹣2,﹣1)、B(﹣1,2)中,哪一个点是函数y=图象上某一个点的限变点?并说明理由;
(3)若点P(a,b)在函数y=﹣x+3的图象上,其限变点Q(a,b′)的纵坐标的取值范围是﹣6≤b′≤﹣3,求a的取值范围.