题目内容
反比例函数的图象,当>0时,随的增大而增大,则的取值范围是 .
下列命题中,逆命题是真命题的是( )
A.直角三角形的两锐角互余
B.对顶角相等
C.若两直线垂直,则两直线有交点
D.若x=1,则x2=1
如图,已知∠1=∠2,∠AED=∠C,求证:△ABC∽△ADE
如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标;
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
如图,在阳光下某一时刻大树AB的影子落在墙DE上的C点,同时1.2 m的标杆影长3 m,已知CD=4m,BD=6 m,求大树的高度.
如图,是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )
A、4个 B、5个 C、6个 D、7个
我校初一的学生要步行到20千米的郊外春游.(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.
(1)后队追上前队需要多长时间?
(2)后队追上前队时间内,联络员走的路程是多少?
(3)后队出发几小时后两队相距3千米?
若多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m是( )
A.2 B.-2 C.4 D.-4
如图,在△ABC中,CD是AB边的中线,∠CDB=60°,将△BCD沿CD折叠,使点B落在点E的位置.证明:△ADE是等边三角形.