题目内容
先化简,再求值:,其中,.
在矩形ABCD中,AD=3,CD=4,点E在边CD上,且 DE=1.
(1)感知:如图①,连接AE,过点E作,交BC于点F,连接AF,易证: (不需要证明);
(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E ,交BC于点F,连接PF.求证: 相似;
(3)应用:如图③,若EF交AB边于点F, ,其他条件不变,且的面积是6,则AP的长为____.
如图,在平面直角坐标系中,抛物线与轴交于点(?1,0)和点,与轴交于点,对称轴为直线=1.
(1)求点的坐标(用含的代数式表示)
(2)连接、,若△的面积为6,求此抛物线的解析式;
(3)在(2)的条件下,点为轴正半轴上的一点,点与点,点与点关于点成中心对称,当△为直角三角形时,求点的坐标.
如图, 是⊙的切线,切点为, 是⊙的直径, 交⊙于点,连结,若 的度数为70°,则∠的大小为( )
A. 70° B. 60° C. 55° D. 35°
已知:如图,四边形ABCD中,∠ACB=90°,AB=15,BC=9,AD=5,DC=13,
求证:△ACD是直角三角形.
三角形的三边长为a,b,c,满足(a+b)2﹣c2=2ab,则此三角形是_________.
如图,a、b、c分别表示直角三角形的三边向外作的正方形的面积,下列关系正确的是( )
A. a+b=c B. a2+b2=c2 C. ab=c D. a+b=c2
已知m+n=,mn=5,则(2-m)(2-n)的值为_________.
推理填空:
如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4(____________),
∴∠2=∠4(等量代换),
∴CE∥BF(__________________________),
∴∠________=∠3(______________________).
又∵∠B=∠C(已知),
∴∠3=∠B(等量代换).
∴AB∥CD(__________________________).