题目内容
如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是 cm.
某班6名同学参加体能测试的成绩如下(单位:分):75,95,75,75,80,80.关于这组数据的表述错误的是( ).
A.众数是75 B.平均数是80 C.中位数是75 D.极差是20
如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB= .
【情境阅读】
在图1中,点A在边OB上,点D在边OC上,且AD∥BC﹒将这样的图形定义为“A型”﹒将△OAD绕着点O旋转α°(0<α<90)得到新的图形(如图2),将图2中的四边形A′B′C′D′称为“准梯形”,A′D′称为上底,B′C′称为下底﹒
【新知学习】
(1)若情境阅读中的△OBC是等腰直角三角形,OB=OC,∠BOC=90°,其余条件不变﹒
①请说明图2中的△O′A′B′≌△O′D′C′﹒
②在图1中,S四边形ABCD=S△OBC﹣S△OAD,请探索图2中的S四边形A′B′C′D′与图1中的S四边形ABCD的大小关系﹒
【变式探究】
(2)如图3,四边形ABCD是由有一个角是60°的“A型”通过旋转变换得到的“准梯形”,AD是上底,BC是下底,且AB=5,BC=8,CD=5,DA=2﹒求这个“准梯形”的面积.
【迁移拓展】
(3)如图4是由具有公共直角顶点的“A型”绕着直角定点旋转α°(0<α<90)得到的“准梯形”,斜边AD为上底,斜边BC为下底,且AB=3,BC=4,CD=6,AD=3.求这个“准梯形”的面积.
先化简,再求值:,其中a2+3a﹣1=0.
分解因式:a3﹣9a= .
下列四个几何体中,主视图与其它三个不同的是( ).
A. B. C. D.
关于x的一元二次方程x2+3x﹣m=0有两个不相等的实数根,则实数m的取值范围是 .
(8分)用简便方法计算:
(1)
(2)