题目内容
【题目】如图,正方形
的边长是3,
,连接
、
交于点
,并分别与边
、
交于点
、
,连接
,下列结论:①
;②
;③
;④当
时,
.正确结论的个数为( )
![]()
A.1个B.2个C.3个D.4个
【答案】D
【解析】
由四边形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可证明△DAP≌△ABQ,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=ODOP,故②正确;根据△CQF≌△BPE,得到S△CQF=S△BPE,根据△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE的长,进而求得QE的长,证明△QOE∽△POA,根据相似三角形对应边成比例即可判断④正确,即可得到结论.
∵四边形ABCD是正方形,
∴AD=BC=AB,∠DAB=∠ABC=90°.
∵BP=CQ,
∴AP=BQ.
在△DAP与△ABQ中,∵
,
∴△DAP≌△ABQ,
∴∠P=∠Q.
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP;
故①正确;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
∴∠DAO=∠P,
∴△DAO∽△APO,
∴
,
∴AO2=ODOP.故②正确;
在△CQF与△BPE中,∵
,
∴△CQF≌△BPE,
∴S△CQF=S△BPE.
∵△DAP≌△ABQ,
∴S△DAP=S△ABQ,
∴S△AOD=S四边形OECF;故③正确;
∵BP=1,AB=3,
∴AP=4.
∵∠P=∠P,∠EBP=∠DAP=90°,
∴△PBE∽△PAD,
∴
,
∴BE
,
∴QE
,
∵∠Q=∠P,∠QOE=∠POA=90°,
∴△QOE∽△POA,
∴
,
∴
,故④正确.
故选:D.