题目内容
【题目】如图△ABC 的∠ABC 的外角平分线 BD 与∠ACB 的外角平分线 CE 交于 P,过 P 作 MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,则 MN=( )
![]()
A. 2B. 3C. 4D. 5
【答案】B
【解析】
过P作PF⊥AC,PG⊥BC,PH⊥AB,连接AP,依据条件可得AP平分∠BAC,再根据平行线的性质和角平分线定义得出∠MAP=∠MPA,∠NBP=∠NPB,即可得到AM=PM,NP=NB,再根据MN=MP-NP=AM-BN进行计算即可.
如图,过P作PF⊥AC,PG⊥BC,PH⊥AB,连接AP,
![]()
∵∠ABC的外角平分线BD与∠ACB的外角平分线CE交于P,
∴PF=PG=PH,
∴点P在∠BAC的平分线上,即AP平分∠BAC,
∴∠MAP=∠BAP,
∵MN∥AB,
∴∠BAP=∠MPA,
∴∠MAP=∠MPA,
∴AM=PM,
同理可得:∠NBP=∠NPB,
∴NP=NB,
∴MN=MP-NP=AM-BN=8-5=3,
故选:B.
练习册系列答案
相关题目
【题目】某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型 价格 | A型 | B型 |
进价(元/盏) | 40 | 65 |
标价(元/盏) | 60 | 100 |
(1)这两种台灯各购进多少盏?
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?