题目内容

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB2=∠PCB.

1.求证:PC是⊙O的切线

2.求证:BC=AB;

3.点M是弧AB的中点,CM交AB于点N,若AB=4,求MN ·MC的值.

 

 

1.解:(1)∵OA=OC,∴∠A=∠ACO

又∵∠COB=2∠A, ∴∠COB=2∠PCB,

∴∠A=∠ACO=∠PCB.(1分)

又∵AB是⊙O的直径,

∴∠ACO+∠OCB=90°

∴∠PCB+∠OCB=90°(2分),

即OC⊥CP,

而OC是⊙O的半径,

∴PC是⊙O的切线.  (3分)

2.∵AC=PC,∠A=∠P,

∴∠A=∠ACO=∠PCB=∠P,(4分)

又∵∠COB=∠A+∠ACO, ∠CBO=∠P+∠PCB

∴∠COB=∠CBO(5分), ∴BC=OC, ∴BC=AB(6分)

3.8

(3)8

解析:

(3)连接MA、MB

       点M是AB的中点,AM=BM,

∴∠ACM=∠BCM(7分)

而∠ACM=∠ABM, ∴∠BCM=∠ABM,而∠BMN=∠BMC

∴△MBN~△MCB,

∴MN·MC=BM.BM(8分)

又∵AB是⊙O的直径,AM=BM

∴∠AMB=90°,AM=BM

∵AB=4,BM=(9分)

∴MN·MC=BM2=8(10分)

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网