题目内容
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上一动点,连结CD,DE,以CD,DE为边作□CDEF。

(1)当0< m <8时,求CE的长(用含m的代数式表示);
(2)当m =3时,是否存在点D,使□CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得□CDEF为矩形,请求出所有满足条件的m的值。
(1)当0< m <8时,求CE的长(用含m的代数式表示);
(2)当m =3时,是否存在点D,使□CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得□CDEF为矩形,请求出所有满足条件的m的值。
(1)
(2)存在(3)m的值为
或0或
或
解:(1)∵A(6,0),B(0,8),∴OA=6,OB=8。∴AB=10。
∵∠CEB=∠EBC=900,∠OBA=∠EBC,∴△BCE∽△BAO。
∴
,即
。∴
。
(2)存在。
∵m =3,∴BC=8-m=5,
。
∴根据勾股定理得BC=4。
∴AE=AB-BE=6。
∵点F落在y轴上(如图1),

∴DE∥BO。
∴△EDA∽△BOA。∴
,即
。
解得:
。∴点D的坐标为(
,0)。
(3)取CE的中点P,过点P作PG⊥y轴于点G,
则
。
①当0< m <8时(如图2),

易证∠GCP=∠BAO,
∴
。
∴
。
∴
。
由题意,根据矩形对角线平分且相等的性质,得OG=CP,
∴
,解得
。
②当m≥8时,OG>CP,不存在满足条件的m的值。
③当m =0,即点C与点O重合时(如图3),

满足题意。
④当m<0时,分两种情况:
ⅰ)当点E与点A重合时(如图4),

易证△COA∽△AOB,
∴
,即
。
解得
。
ⅱ)当点E与点A重合时(如图5),


,
由题意,得OG=CP,
∴
。
解得
。
综上所述,m的值为
或0或
或
。
(1)由△BCE∽△BAO即可用含m的代数式表示出CE的长。
(2)由△EDA∽△BOA即可求得
,从而得到点D的坐标。
(3)分①0< m <8,②m≥8,③m =0,④m<0四种情况讨论。
∵∠CEB=∠EBC=900,∠OBA=∠EBC,∴△BCE∽△BAO。
∴
(2)存在。
∵m =3,∴BC=8-m=5,
∴根据勾股定理得BC=4。
∴AE=AB-BE=6。
∵点F落在y轴上(如图1),
∴DE∥BO。
∴△EDA∽△BOA。∴
解得:
(3)取CE的中点P,过点P作PG⊥y轴于点G,
则
①当0< m <8时(如图2),
易证∠GCP=∠BAO,
∴
∴
∴
由题意,根据矩形对角线平分且相等的性质,得OG=CP,
∴
②当m≥8时,OG>CP,不存在满足条件的m的值。
③当m =0,即点C与点O重合时(如图3),
满足题意。
④当m<0时,分两种情况:
ⅰ)当点E与点A重合时(如图4),
易证△COA∽△AOB,
∴
解得
ⅱ)当点E与点A重合时(如图5),
由题意,得OG=CP,
∴
解得
综上所述,m的值为
(1)由△BCE∽△BAO即可用含m的代数式表示出CE的长。
(2)由△EDA∽△BOA即可求得
(3)分①0< m <8,②m≥8,③m =0,④m<0四种情况讨论。
练习册系列答案
相关题目