题目内容
某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为( )
A. 6.7×10?5 B. 0.67×10?6 C. 0.67×10?5 D. 6.7×10?6
如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.
如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…
设游戏者从圈A起跳.
(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;
(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?
如图,已知,相邻两条平行直线间的距离相等,若等腰直角的直角顶点C在上,另两个顶点A、B分别在、上,则的值是
A. B. C. D.
如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为______.
如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是( )。
A. △CDH的周长等于AD+CD B. FC平分∠BFD C. AC2+BF2=4CD2 D. DE2=EF.CE
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF.
(1)试判断直线BF与⊙O的位置关系,并说明理由;
(2)若AB=6,BF=8,求tan∠CBF.
计算:2tan60°﹣+(2﹣π)0﹣()﹣1
如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.
(1)a=___,b=___,△BCD的面积为______;
(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;
(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由.
如图,点A为反比例函数y=-图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为( )
A. -4 B. 4 C. -2 D. 2