题目内容
已知一次函数
【答案】分析:先根据直线解析式求出点A、B的坐标,联立两函数解析式求解得到点P的坐标,设直线y=-
x-
与x轴的交点为C,求出点C的坐标,然后求粗AC的长度,再根据S△ABP=S△APC+S△ABC,列式计算即可得解.
解答:
解:令y=0,则
+5=0,
解得x=-
,
令x=0,则y=-
,
所以,点A(-
,0),B(0,-
),
联立
,
解得
,
所以,点P(-3,1),
设直线y=-
x-
与x轴的交点为C,
令y=0,则-
x-
=0,
解得x=-
,
所以,点C(-
,0),
AC=-
-(-
)=-
+
=
,
S△ABP=S△APC+S△ABC,
=
×
×1+
×
×
,
=
+
,
=
.
故答案为:
.
点评:本题考查了两直线相交的问题,主要涉及直线与坐标轴的交点的求解,联立两直线解析式求交点坐标以及求三角形的面积的方法,难点较大,把△ABP的面积分成两个三角形的面积求解比较关键.
解答:
解得x=-
令x=0,则y=-
所以,点A(-
联立
解得
所以,点P(-3,1),
设直线y=-
令y=0,则-
解得x=-
所以,点C(-
AC=-
S△ABP=S△APC+S△ABC,
=
=
=
故答案为:
点评:本题考查了两直线相交的问题,主要涉及直线与坐标轴的交点的求解,联立两直线解析式求交点坐标以及求三角形的面积的方法,难点较大,把△ABP的面积分成两个三角形的面积求解比较关键.
练习册系列答案
相关题目
已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )
| A、y=-x-2 | B、y=-x-6 | C、y=-x+10 | D、y=-x-1 |