题目内容

【题目】如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE= AC,连接CE、OE,连接AE交OD于点F.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.

【答案】
(1)证明:在菱形ABCD中,OC= AC.

∴DE=OC.

∵DE∥AC,

∴四边形OCED是平行四边形.

∵AC⊥BD,

∴平行四边形OCED是矩形.

∴OE=CD


(2)解:在菱形ABCD中,∠ABC=60°,

∴AC=AB=4.

∴在矩形OCED中,CE=OD= =2

在Rt△ACE中,

AE= =2


【解析】(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网