题目内容
已知二次函数y=x2-2ax+3(a为常数)的图象上有三点:A(x1,y1)、B(x2,y2)、C(x3,y3),其中x1=a-3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是________.
y2<y3<y1
分析:因为二次函数y=x2-2ax+3(a为常数)的对称轴为x=-
=a;A(x1,y1)的对称点横坐标为2a-a+3=a+3;对称点坐标为A′(a+3,y1);因为a+1<a+2<a+3;所以y2<y3<y1.
解答:∵称轴为x=-
=a,a<a+1<a+2<a+3,
∴y2<y3<y1.
点评:本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质:①a>0时,抛物线开口向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧y随x的增大而减小;②a<0时,抛物线开口向下,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大.
分析:因为二次函数y=x2-2ax+3(a为常数)的对称轴为x=-
解答:∵称轴为x=-
∴y2<y3<y1.
点评:本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质:①a>0时,抛物线开口向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧y随x的增大而减小;②a<0时,抛物线开口向下,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大.
练习册系列答案
相关题目
已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是( )
A、
| ||
B、-
| ||
C、
| ||
D、-
|
| A、x1=1,x2=3 | B、x1=0,x2=3 | C、x1=-1,x2=1 | D、x1=-1,x2=3 |