题目内容
如图:已知反比例函数
(x<0)和
(x>0),直线OA与双曲线
(x<0)交于A点,将直线OA向上平移使其分别交双曲线于B、C两点,与y轴交于P,且S△ABC=4,
,则k=________.
分析:设A(xa,ya),B(xb,yb),C(xc,yc),则有xaya=xbyb=-2,xcyc=k,根据OA∥BC,可得
,可得yaxb-xayb+ybxc-ycxb-yaxc+xayc=8 ②,联立①②得:ybxc-ycxb=8 ③,再由
解答:
由平移性质,可得OA∥BC,
∴
整理得:yaxb-yaxc=xayb-xayc ①
过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D.
∵S△ABC=S梯形AFEB+S梯形BEDC-S梯形AFDC=4
∴
即:
整理得:yaxb-xayb+ybxc-ycxb-yaxc+xayc=8 ②
由①②式得:ybxc-ycxb=8 ③
由
∴yb=
代入③式得:3+
∴xcyc=
即k=
故答案为:
点评:本题考查了反比例函数的综合,涉及了平行线的性质,点的坐标与线段长度的转换及不规则面积的求解,解答本题的关键是数形结合思想及整体代入思想的运用,难度较大.
练习册系列答案
相关题目