题目内容
【题目】黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高(AB).
(结果精确到1m,参考数据:
≈1.4,
≈1.7)![]()
【答案】解:延长AD交BC的延长线于G,作DH⊥BG于H,如图所示:
在Rt△DHC中,∠DCH=60°,CD=4,
则CH=CDcos∠DCH=4×cos60°=2,DH=CDsin∠DCH=4×sin60°=2
,
∵DH⊥BG,∠G=30°,
∴HG=
=
=6,
∴CG=CH+HG=2+6=8,
设AB=xm,
∵AB⊥BG,∠G=30°,∠BCA=45°,
∴BC=x,BG=
=
=
x,
∵BG﹣BC=CG,
∴
x﹣x=8,
解得:x≈11(m);
答:电线杆的高为11m.![]()
【解析】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.延长AD交BC的延长线于G,作DH⊥BG于H,由三角函数求出求出CH、DH的长,得出CG,设AB=xm,根据正切的定义求出BG,得出方程,解方程即可.
练习册系列答案
相关题目