题目内容
数轴上A、B、C三点分别对应实数a、1、c,且BC-AB=AC.下列选项中,满足A、B、C三点在数轴上的位置关系是( )
A. B.
C. D.
下列命题中,是真命题的是( ) ①两条直线被第三条直线所截,同位角相等;
②在同一平面内,垂直于同一直线的两条直线互相平行
③三角形的三条高中,必有一条在三角形的内部
④是一个负数.
A. ①② B. ②③ C. ①③ D. ③④
如图为二次函数y=ax2+bx+c的图象,在下列说法中:
①ac<0; ②方程ax2+bx+c=0的根是x1=﹣1,x2=3
③a+b+c>0 ④当x>1时,y随x的增大而增大.
正确的说法有_____.
如图(1),一个圆球放置在V形架中.图(2)是它的平面示意图,CA和CB都是⊙O的切线,切点分别是A,B.
(1)如果⊙O的半径为2cm,且AB=6cm,求∠ACB.
(2)在(1)的基础上,圆球沿射线CB滚动,圆心O滚动到O1,B1是切点,已知O O1=10,写出圆心O1到射线CO的距离。
如图,平面直角坐标系中,△ABC≌△DEF, AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在直线y=﹣3上,D、E两点在y轴上,则点F的横坐标为( )
A. 2 B. 3 C. 4 D. 5
顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
A. 菱形 B. 对角线相等的四边形 C. 矩形 D. 对角线互相垂直的四边形
如图,在△ABC中,点D为BC边的中点,以D为顶点的∠EDF的两边分别与AB、AC交于点E、F,且∠EDF与∠A互补.
(1)如图①,若AB=AC,且∠A=90°,证明:DE=DF;
(2)如图②,若AB=AC,那么(1)中的结论是否成立?请说明理由.
(3)如图③,若,探索线段DE与DF的数量关系,并证明你的结论.
如图,PA、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是( )
A. 70° B. 50° C. 40° D. 20°
如图,在△ABC中,AB=AC=10cm,BC=16cm,现点P从点B出发,沿BC向C点运动,运动速度为m/s,若点P的运动时间为t秒,则当△ABP是直角三角形时,时间t的值可能是_____.