题目内容

如图,已知抛物线y=ax2+bx+c与x轴的交点为A、B(A在B的右边),与y轴正半轴交于点C,过点C作CD∥x轴,交抛物线于点D,抛物线的对称轴为直线l交CD于点M,交x轴于点N,四边形CDAN是平行四边形.
(1)若a=-1,数学公式,求b的值;
(2)若a=-1,求b与c的关系;
(3)抛物线y=ax2+bx+c的顶点为P,求PM:OC的值.

解:(1)∵a=-1,c=
∴抛物线的解析式为y=-x2+bx+
∴C(0,),
∵点N在对称轴上,
∴N(,0),
∵抛物线具有对称性,
∴D(b,),四边形CDAN为平行四边形,
∴AN=CD=b,
∴A(,0),
∴-(-2+•b+=0,
b=±
∵->0,
∴b=

(2)∵a=-1,
∴抛物线的解析式为y=-x2+bx+c,
∴C(0,c),
∵点N在对称轴上,
∴N(,0),
∵抛物线具有对称性,
∴D(b,c),
四边形CDAN为平行四边形,∴AN=CD=b,
∴A(,0),
∴-(-2+•b+c=0,
∴4c=3b2

(3)∵抛物线的解析式为:y=ax2+bx+c,
∴C(0,c),
∵点N在对称轴上,
∴N(-,0),
∵抛物线具有对称性,
∴D(-,c),
四边形CDAN为平行四边形,∴AN=CD=-
∴A(-,0),
∴-(-2+•b+c=0,
4ac=-3b2
∵P为抛物线的顶点,∴P(-),
∴PM=-c=-
==-==
分析:(1)先将a和c的值代入y=ax2+bx+c,求出C点坐标,结合四边形CDAN是平行四边形便可求出b的值;
(2)将a=-1代入y=ax2+bx+c,再根据二次函数的性质便可求出b与c的关系;
(3)先求出抛物线的顶点P的坐标,便可求出PM:OC的值.
点评:本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网