题目内容
在如图所示的正方形网格中,确定点D的位置,使得以A、B、C、D为顶点的四边形为等腰梯形.则点D的位置应在( )
A.点M处 B.点N处 C.点P处 D.点Q处
(本题满分10分) 学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名教师,且总的租车费用不超过2300元,求最省钱的租车方案.
如图,已知在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,给出下列结论:
①BE=DF;
②∠DAF=15°;
③AC垂直平分EF;
④BE+DF=EF.
其中结论正确的共有( )
A.1个 B.2个 C.3个 D.4个
如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为 千米∕小时.
函数y=中自变量x的取值范围是 .
(12分)请阅读下列材料:
问题:如图(1),圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:
路线1:高线AB+底面直径BC,如图(1)所示.
路线2:侧面展开图中的线段AC,如图(2)所示.
设路线1的长度为l1,则l1=AB+BC=2+8=10;
设路线2的长度为l2,则l2===;
∵=102﹣(4+16π2)=96﹣16π2=16(6﹣π2)<0
∴即l1<l2
所以选择路线1较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)
①此时,路线1:l1= .路线2:l2= .
②所以选择哪条路线较短?试说明理由.
(2)请你帮小明继续研究:当圆柱的底面半径为2cm,高为hcm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.
(9分)计算:6÷3+·(﹣5a).
计算的结果是( )
A.8 B.﹣4 C.4 D.±4
(2分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )
A.(3,7) B.(5,3) C.(7,3) D.(8,2)