题目内容
如图,△ABC≌△DBE,∠DBC=150°,∠ABD=40°,则∠ABE的度数是____________
如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
A. 35° B. 40° C. 50° D. 65°
已知等腰△ABC中,AB=AC,∠CAB=108°,D是直线BC上一点(不与B、C重合),连接AD,若△ABD是等腰三角形,则∠DAC= .
如图,已知Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.∠ACE=90°吗?为什么?
化简:
(1)(3x-1)(2x2+3x-4);
(2)(a+b)(b-a);
将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A. 15° B. 22.5° C. 30° D. 45°
如图所示,∠1和∠2是对顶角的是( )
A. B. C. D.
如图,△ABC中,∠ABC与∠ACB的角平分线相交于点D,过D点的直线EF∥BC且交AB于E、交AC于F,已知AB=7cm,AC=5cm,BC=6cm,则△AEF的周长为_____cm.
综合与探究
如图,抛物线y=﹣x2+2x+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,其对称轴与抛物线交于点D.与x轴交于点E.
(1)求点A,B,D的坐标;
(2)点G为抛物线对称轴上的一个动点,从点D出发,沿直线DE以每秒2个单位长度的速度运动,过点C作x轴的平行线交抛物线于M,N两点(点M在点N的左边).
设点G的运动时间为ts.
①当t为何值时,以点M,N,B,E为顶点的四边形是平行四边形;
②连接BM,在点G运动的过程中,是否存在点M.使得∠MBD=∠EDB,若存在,求出点M的坐标;若不存在,请说明理由;
(3)点Q为坐标平面内一点,以线段MN为对角线作萎形MENQ,当菱形MENQ为正方形时,请直接写出t的值.