题目内容
解方程:.
如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为 .
△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,①BC与CF的位置关系为: .
②BC,CD,CF之间的数量关系为 ;(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.
如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )
A. B.2 C. D.
如图所示,梯形中,∥,,,,,点是边上的动点,点是射线上一点,射线和射线交于点,且.
(1)求线段的长;
(2)如果是以为腰的等腰三角形,求线段的长;
(3)如果点在边上(不与点、重合),设,,求关于的函数解析式,并写出的取值范围;
在中,点、分别是、的中点,那么的面积与的面积的比
是__________.
函数的定义域是__________.
如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为 .
在实数﹣,﹣2,0,中,最小的实数是( )
A.﹣2 B.0 C.﹣ D.