题目内容
一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )
A. 中 B. 考 C. 顺 D. 利
在菱形ABCD中,AC是对角线,CD=CE,连接DE,点M是线段DE的中点.
(1)如图1,连接CM,若AC=16,CD=10,求DE的长
(2)如图2,点F在菱形的外部,DF=DM,且∠CDA=∠FDE,连接FM交AD于点G,FM的延长线交AC于点N,求证:CN=AG.
如图,过原点O的直线与反比例函数的图像交于点A、P,过点P作x轴的垂线,点B为垂足,连接AB,若△ABP的面积是5,则______.
先化简,再求值:(2+x)(2–x)+(x–1)(x+5),其中x=.
如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为( )
A. B. 3 C. D.
如图,已知AB是⊙O的直径,C是⊙O上的一点,连结AC并延长至D,使CD=AC,连结BD,作CE⊥BD,垂足为E。
(1)线段AB与DB的大小关系为 ,请证明你的结论;
(2)判断CE与⊥⊙O的位置关系,并证明;
(3)当△CED与四边形ACEB的面积比是1:7时,试判断△ABD的形状,并证明。
如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,an,则an= .
【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.
小娟是这样解决的:
如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.
易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【问题解决】
已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ =,求sin2β的值.
一次函数y=x﹣1的图象经过平移后经过点(﹣4,2),此时函数图象不经过( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限