题目内容
计算:
(1);
(2)。
如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF
(1)求证:△ACD≌△CBF
(2)以AD为边作等边三角形△ADE,点D在线段BC上的何处时,四边形CDEF是平行四边行.
如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,﹣1)、C(2,1).
(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );
(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标( , ).
如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为( )
A.4 B.16 C.2 D.4
已知:如图,在边长为8的正方形ABCD中,E是边CD的中点,将沿AE对折至,延长EF交边BC于点G,连接AG。
(1)求证:; (2)求BG的长。
如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC等于__________。
为了美化环境,某市加大对道路绿化的投资,2013年用于道路绿化投资100万元,2015年用于道路绿化投资144万元,求这两年道路绿化投资的年平均增长率。设这两年道路绿化投资的年平均增长率为x,根据题意所列方程为( )
A. B.
C. D.
如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于 .
已知函数C1:y=kx2+(﹣3k)x﹣4.
(1)求证:无论k为何值,函数图象与x轴总有交点?
(2)当k≠0时,(n﹣3,n﹣7)、(﹣n+1,n﹣7)是抛物线上的两个不同点,
①求抛物线的表达式;
②求n;
(3)当k≠0时,二次函数与x轴交于A,B两点,与y轴交于点C,是否存在实数k,使△ABC为等腰三角形?若存在,请求出实数k;若不存在,请说明理由?