题目内容

在△ABC中,AB=AC=3,BC=4,则tanB=________.


分析:过点A作AD⊥BC于D,根据等腰三角形的性质,运用勾股定理求出高AD的长,再利用三角函数的定义求解.
解答:解:如图所示,过点A作AD⊥BC于D.
∵在△ABC中,AB=AC=3,BC=4,AD⊥BC,
∴BD=DC=2.
∴AD=
∴tanB==
点评:主要考查三角函数的定义.等腰三角形中常作底边上的高,利用“三线合一”的性质解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网