ÌâÄ¿ÄÚÈÝ
£¨2012•·ðɽ£©¹æÂÉÊÇÊýѧÑо¿µÄÖØÒªÄÚÈÝÖ®Ò»£®
³õÖÐÊýѧÖÐÑо¿µÄ¹æÂÉÖ÷ÒªÓÐÒ»Ð©ÌØ¶¨µÄ¹æÔò¡¢·ûºÅ£¨Êý£©¼°ÆäÔËËã¹æÂÉ¡¢Í¼ÐεÄÊýÖµÌØÕ÷ºÍλÖùØÏµÌØÕ÷µÈ·½Ã森
ÇëÄã½â¾öÒÔÏÂÓëÊýµÄ±íʾºÍÔËËãÏà¹ØµÄÎÊÌ⣺
£¨1£©Ð´³öÆæÊýaÓÃÕûÊýn±íʾµÄʽ×Ó£»
£¨2£©Ð´³öÓÐÀíÊýbÓÃÕûÊýmºÍÕûÊýn±íʾµÄʽ×Ó£»
£¨3£©º¯ÊýµÄÑо¿ÖУ¬Ó¦¹Ø×¢yËæx±ä»¯¶ø±ä»¯µÄÊýÖµ¹æÂÉ£¨¿Î±¾ÀïÑо¿º¯ÊýͼÏóµÄÌØÕ÷ʵ¼ÊÉÏÒ²ÊÇΪÁË˵Ã÷º¯ÊýµÄÊýÖµ¹æÂÉ£©£®
ÏÂÃæ¶Ôº¯Êýy=x2µÄijÖÖÊýÖµ±ä»¯¹æÂɽøÐгõ²½Ñо¿£º
ÓÉ±í¿´³ö£¬µ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó1¸öµ¥Î»Ê±£¬yµÄÖµÒÀ´ÎÔö¼Ó1£¬3£¬5¡
Çë»Ø´ð£º
¢Ùµ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó
¸öµ¥Î»Ê±£¬yµÄÖµ±ä»¯¹æÂÉÊÇʲô£¿
¢Úµ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó
¸öµ¥Î»Ê±£¬yµÄÖµ±ä»¯¹æÂÉÊÇʲô£¿
³õÖÐÊýѧÖÐÑо¿µÄ¹æÂÉÖ÷ÒªÓÐÒ»Ð©ÌØ¶¨µÄ¹æÔò¡¢·ûºÅ£¨Êý£©¼°ÆäÔËËã¹æÂÉ¡¢Í¼ÐεÄÊýÖµÌØÕ÷ºÍλÖùØÏµÌØÕ÷µÈ·½Ã森
ÇëÄã½â¾öÒÔÏÂÓëÊýµÄ±íʾºÍÔËËãÏà¹ØµÄÎÊÌ⣺
£¨1£©Ð´³öÆæÊýaÓÃÕûÊýn±íʾµÄʽ×Ó£»
£¨2£©Ð´³öÓÐÀíÊýbÓÃÕûÊýmºÍÕûÊýn±íʾµÄʽ×Ó£»
£¨3£©º¯ÊýµÄÑо¿ÖУ¬Ó¦¹Ø×¢yËæx±ä»¯¶ø±ä»¯µÄÊýÖµ¹æÂÉ£¨¿Î±¾ÀïÑо¿º¯ÊýͼÏóµÄÌØÕ÷ʵ¼ÊÉÏÒ²ÊÇΪÁË˵Ã÷º¯ÊýµÄÊýÖµ¹æÂÉ£©£®
ÏÂÃæ¶Ôº¯Êýy=x2µÄijÖÖÊýÖµ±ä»¯¹æÂɽøÐгõ²½Ñо¿£º
| xi | 0 | 1 | 2 | 3 | 4 | 5 | ¡ |
| yi | 0 | 1 | 4 | 9 | 16 | 25 | ¡ |
| yi+1-yi | 1 | 3 | 5 | 7 | 9 | 11 | ¡ |
Çë»Ø´ð£º
¢Ùµ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó
| 1 |
| 2 |
¢Úµ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó
| 1 |
| n |
·ÖÎö£º£¨1£©nÊÇÈÎÒâÕûÊý£¬Å¼ÊýÊÇÄܱ»2Õû³ýµÄÊý£¬ÔòżÊý¿ÉÒÔ±íʾΪ2n£¬ÒòΪżÊýÓëÆæÊýÏà²î1£¬ËùÒÔÆæÊý¿ÉÒÔ±íʾΪ2n+1£®
£¨2£©¸ù¾ÝÓÐÀíÊýÊÇÕûÊýÓë·ÖÊýµÄͳ³Æ£¬¶øËùÓеÄÕûÊý¶¼¿ÉÒÔд³É·ÖÊýµÄÐÎʽ£¬¾Ý´Ë¿ÉÒԵõ½´ð°¸£»
£¨3£©¸ù¾Ýͼ±í¼ÆËã³öÏàÓ¦µÄÊýÖµºó¼´¿É¿´³öyËæ×ÅxµÄ±ä»¯¶ø±ä»¯µÄ¹æÂÉ£»
£¨2£©¸ù¾ÝÓÐÀíÊýÊÇÕûÊýÓë·ÖÊýµÄͳ³Æ£¬¶øËùÓеÄÕûÊý¶¼¿ÉÒÔд³É·ÖÊýµÄÐÎʽ£¬¾Ý´Ë¿ÉÒԵõ½´ð°¸£»
£¨3£©¸ù¾Ýͼ±í¼ÆËã³öÏàÓ¦µÄÊýÖµºó¼´¿É¿´³öyËæ×ÅxµÄ±ä»¯¶ø±ä»¯µÄ¹æÂÉ£»
½â´ð£º½â£º£¨1£©nÊÇÈÎÒâÕûÊý£¬Ôò±íʾÈÎÒâÒ»¸öÆæÊýµÄʽ×ÓÊÇ£º2n+1£»
£¨2£©ÓÐÀíÊýb=
£¨n¡Ù0£©£»
£¨3£©¢Ùµ±x=0ʱ£¬y=0£¬
µ±x=
ʱ£¬y=
£¬
µ±x=1ʱ£¬y=1£¬
µ±x=
ʱ£¬y=
£®
¹Êµ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó
¸öµ¥Î»Ê±£¬yµÄÖµÒÀ´ÎÔö¼Ó
¡¢
¡¢
¡
¢Úµ±x=0ʱ£¬y=0£¬
µ±x=
ʱ£¬y=
£¬
µ±x=
ʱ£¬y=
£¬
µ±x=
ʱ£¬y=
£¬
¹Êµ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó
¸öµ¥Î»Ê±£¬yµÄÖµÒÀ´ÎÔö¼Ó
¡¢
¡¢
¡
£¨2£©ÓÐÀíÊýb=
| m |
| n |
£¨3£©¢Ùµ±x=0ʱ£¬y=0£¬
µ±x=
| 1 |
| 2 |
| 1 |
| 4 |
µ±x=1ʱ£¬y=1£¬
µ±x=
| 3 |
| 2 |
| 9 |
| 4 |
¹Êµ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
| 5 |
| 4 |
¢Úµ±x=0ʱ£¬y=0£¬
µ±x=
| 1 |
| n |
| 1 |
| n2 |
µ±x=
| 2 |
| n |
| 4 |
| n2 |
µ±x=
| 3 |
| n |
| 9 |
| n2 |
¹Êµ±xµÄȡֵ´Ó0¿ªÊ¼Ã¿Ôö¼Ó
| 1 |
| n |
| 1 |
| n2 |
| 3 |
| n2 |
| 5 |
| n2 |
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÐÔÖʼ°ÊµÊýµÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇ·¢ÏÖ¹æÂɲ¢ÀûÓùæÂɽâÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿