题目内容

如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E.
(1)若∠A=40°,求∠DCB的度数.
(2)若AE=4,△DCB的周长为13,求△ABC的周长.
分析:(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ACB的度数,又由线段垂直平分线的性质,可得AD=CD,即可求得∠ACD的度数,继而求得答案;
(2)由AE=4,△DCB的周长为13,即可求得△ABC的周长.
解答:解:(1)∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠ACB=
180°-40°
2
=70°,
∵DE垂直平分AC,
∴DA=DC,
∴在△DAC中,∠DCA=∠A=40°,
∴∠DCB=∠ACB-∠ACD=30°;

(2)∵DE垂直平分AC,
∴DA=DC,EC=EA=4,
∴AC=2AE=8,
∴△ABC的周长为:AC+BC+BD+DA=8+BC+BD+DC=8+13=21.
点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网