题目内容
如下表:
3
a
b
c
-1
2
…
从左到右每个小格中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2016个格子中的数为_____.
如图,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.
(参考数据:sin27°≈, cos27°≈, tan27°≈, sin53°≈, cos53°≈, tan53°≈)
某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.
甲说:将毛竹全部进行粗加工后销售;
乙说:30天都进行精加工,未加工的毛竹直接销售;
丙说:30天中可用几天粗加工,再用几天精加工后销售;
请问厂长应采用哪位说的方案做,获利最大?
在3,0,﹣2,﹣四个数中,最小的数是( )
A. 3 B. 0 C. ﹣2 D. ﹣
某学校准备印刷一批证书,现有两个印刷厂可供选择:
甲厂收费方式:收制版费1000元,每本印刷费0.5元;
乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.
(1)若x 不超过2000时,甲厂的收费为_____元,乙厂的收费为_____元;
(2)若x 超过2000时,甲厂的收费为_____元,乙厂的收费为_____元
(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?
(4)请问印刷多少本证书时,甲乙两厂收费相同?
若代数式﹣3a2x-1和是同类项,则x=_____.
加工一批零件,甲单独加工需要20天完成,乙单独加工需要30天完成,由于工作需要,甲先单独加工了5天,之后甲、乙合作了x天,此时甲、乙二人完成的工作量为( )
A. + B. + C. + D. 2(x+5)+30x
小明在解一元二次方程时,发现有这样一种解法:
如:解方程x(x+4)=6.
【解析】原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.
(x+2)2﹣22=6,
(x+2)2=6+22,
(x+2)2=10.
直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.
我们称小明这种解法为“平均数法”.
(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.
【解析】原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.
(x+a)2﹣b2=5,
(x+a)2=5+b2.
直接开平方并整理,得.x1=c,x2=d.
上述过程中的a、b、c、d表示的数分别为 , , , .
(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.
一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.