题目内容
若实数a、b满足,则 _____.
不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,篮球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法,则两次摸到的都是白球的概率为( )
A. B. C. D.
分解因式:(1)a2﹣ab+a﹣b
(2) x4﹣81y4.
下列运算正确的是( )
A. a3•a4=a12 B. a5﹣a3=a2 C. (a2)m=a2m D. (a+1)0=1
用适当的方法解下列方程:
(1) (2)2x2+3x—1=0(用配方法解)
(3) (4)(x+1)(x+8)=-2
(5) (6)
关于x的一元二次方程 kx2+2x﹣1=0有两个不相等实数根,则k 的取值范围是( )
A. k>﹣1 B. k≥﹣1 C. k≠0 D. k>﹣1且k≠0
如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).
(1)直接写出点E的坐标 ;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t= 秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.
如图,在?ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.
在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )
A. B. 或
C. D. 或