题目内容

如图,在△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB于D,则AD的长度为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:首先在直角三角形ABC中利用勾股定理求得斜边AB的长度,然后利用直角三角形的面积公式来求斜边AB上的高线CD的长度.
解答:∵在△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB===5(勾股定理).
又∵CD⊥AB于D,
AC•BC=AB•CD,即3×4=5CD,
解得,CD=
故选B.
点评:本题考查了三角形的面积,勾股定理.解题时,巧妙地利用三角形的面积公式将未知线段CD与已知线段整合于同一方程中,通过解方程即可求得线段CD的长度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网