题目内容
【题目】如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为________.
![]()
【答案】![]()
【解析】
由四边形ABCD为菱形性质得DC∥AB,则同旁内角互补,得∠CDE+∠DEB=180°,
结合DE⊥AB,则DE⊥DC,已知∠DCE=30°,设DE=x, 用勾股定理把DC、AD、和DE用含x的代数式表示,在Rt△AED中,利用勾股列关系式求得x=
, 则
.
解:∵四边形ABCD为菱形,
∴DC∥AB,
∴∠CDE+∠DEB=180°,
∵DE⊥AB,
∴DE⊥DC,
∵∠DCE=30°,
设DE=x, 则EC=2x,
,
∴AD=DC=
,
在Rt△AED中,有AD2=DE2+AE2 ,
![]()
解得x=
,
,
故答案为:
.
练习册系列答案
相关题目