题目内容
如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠ACB相等的角有( )
A. 5个 B. 4个 C. 3个 D. 2个
“四边形是多边形” ,这个命题的逆命题是____________________________,这个逆命题是_____命题(填“真”或“假” )
(1)计算: .
(2)先化简,再求值: ,其中x=2.
解下列方程组:
(1) (2)
(3) (4)
在同一平面内,如果a⊥b,b⊥c,则a_________c,因为____________________________.
提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,
△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=AD时(如图②):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP
=S四边形ABCD﹣S△ABD﹣S△CDA
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)
=S△DBC+S△ABC.
(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为: ;
(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为: .
如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是__________
一张宽为6cm的平行四边形纸带ABCD如图1所示,AB=10cm,小明用这张纸带将底面周长为10cm直三棱柱纸盒的侧面进行包贴(要求包贴时没有重叠部分). 小明通过操作后发现此类包贴问题可将直三棱柱的侧面展开进行分析.
(1)若纸带在侧面缠绕三圈,正好将这个直三棱柱纸盒的侧面全部包贴满.则纸带AD的长度为____ cm;
(2)若AD=100cm,纸带在侧面缠绕多圈,正好将这个直三棱柱纸盒的侧面全部包贴满.则这个直三棱柱纸盒的高度是_____cm.
已知反比例函数的图象经过点 和 ,则 的值是_______.