题目内容
若=2,则的值为________。
下列命题,其中是真命题的为( )
A. 一组对边平行,另一组对边相等的四边形是平行四边形
B. 对角线互相垂直的四边形是菱形
C. 对角线相等的四边形是矩形
D. 一组邻边相等的矩形是正方形
如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.
如图,将△ABC绕点A逆时针旋转α后,与△ADE构成位似图形,我们称与互为“旋转位似图形”。
(1)知识理【解析】两个重合了一个顶点且边长不相等的等边三角形______(填“是”或“不是”)“旋转位似图形”;
如图1,△ABC和△ADE互为“旋转位似图形”,
①若α=26º,∠B=100º,∠E=29º,则∠BAE=______;
②若AD=6,DE=8,AB=4,则BC=______;
(2)知识运用:
如图2,在四边形ABCD中,∠ADC=90º,AE⊥BD于E,∠DAC=∠DBC,求证:△ACD和△ABE互为“旋转位似图形”;
(3)拓展提高:
如图3,△ABC为等腰直角三角形,点G为AC中点,点F是AB上一点,D是GF延长线上一点,点E在线段GF上,且△ABD与△AGE互为“旋转位似图形”,若AC=6,AD=2,求出DE和BD的值。
定义:斜率表示一条直线y=kx+b(k≠0)关于橫坐标轴倾斜程度的量,即直线与x轴正方向夹角(倾斜角α)的正切值,表示成k=tanα。
(1)直线y=x-2b的倾斜角α=________。
(2)如图,在△ABC中,tanA、tanB是方程x2-(+1)x+=0的两根,且∠A>∠B,B点坐标为(5,0),求出直线AC关系式。
如图,在直角坐标系中,以点O为圆心,半径为4的圆与y轴交于点B,点A(8,4)是圆外一点,直线AC与⊙O切于点C,与x轴交于点D,则点C的坐标为( )
A. (2,-2) B. (,-) C. (,-) D. (2,-2)
方程组的解为负数,求a的范围.
在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.
(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
如图,∠1=∠B,∠2=20°,则∠D=( ).
A. 20° B. 22° C. 30° D. 45°