题目内容
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=-
.下列结论中,正确的是
- A.abc>0
- B.a+b=0
- C.2b+c>0
- D.4a+c<2b
D
分析:由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=-
,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.
解答:A、∵开口向上,
∴a>0,
∵抛物线与y轴交于负半轴,
∴c<0,
∵对称轴在y轴左侧,
∴-
<0,
∴b>0,
∴abc<0,
故本选项错误;
B、∵对称轴:x=-
=-
,
∴a=b,
故本选项错误;
C、当x=1时,a+b+c=2b+c<0,
故本选项错误;
D、∵对称轴为x=-
,与x轴的一个交点的取值范围为x1>1,
∴与x轴的另一个交点的取值范围为x2<-2,
∴当x=-2时,4a-2b+c<0,
即4a+c<2b,
故本选项正确.
故选D.
点评:此题考查了二次函数图象与系数的关系.此题难度适中,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.
分析:由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=-
解答:A、∵开口向上,
∴a>0,
∵抛物线与y轴交于负半轴,
∴c<0,
∵对称轴在y轴左侧,
∴-
∴b>0,
∴abc<0,
故本选项错误;
B、∵对称轴:x=-
∴a=b,
故本选项错误;
C、当x=1时,a+b+c=2b+c<0,
故本选项错误;
D、∵对称轴为x=-
∴与x轴的另一个交点的取值范围为x2<-2,
∴当x=-2时,4a-2b+c<0,
即4a+c<2b,
故本选项正确.
故选D.
点评:此题考查了二次函数图象与系数的关系.此题难度适中,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |