题目内容
已知a的绝对值是4,b与c互为相反数,d的倒数是2,求a+2b+2c-|d|的值.
解:∵a的绝对值是4,
∴a=±4,
∵b与c互为相反数,
∴b+c=0,
∵d的倒数是2,
∴d=
,
当a=4时:a+2b+2c-|d|=4+2(b+c)-
=4-
=3
;
当a=-4时:a+2b+2c-|d|=-4+2(b+c)-
=-4-
=-4
.
分析:首先根据绝对值的性质可得a=±4;由有理数的加法法则可得b+c=0,再根据倒数概念可得d的值,再代入计算即可.
点评:此题主要考查了绝对值、相反数、倒数、以及有理数的加减计算,关键是熟练掌握绝对值、相反数、倒数的定义.
∴a=±4,
∵b与c互为相反数,
∴b+c=0,
∵d的倒数是2,
∴d=
当a=4时:a+2b+2c-|d|=4+2(b+c)-
当a=-4时:a+2b+2c-|d|=-4+2(b+c)-
分析:首先根据绝对值的性质可得a=±4;由有理数的加法法则可得b+c=0,再根据倒数概念可得d的值,再代入计算即可.
点评:此题主要考查了绝对值、相反数、倒数、以及有理数的加减计算,关键是熟练掌握绝对值、相反数、倒数的定义.
练习册系列答案
相关题目