题目内容

如图,点是半圆的半径上的动点,作.点是半圆上位于左侧的点,连结交线段,且

 

(1)求证:是⊙O的切线.

(2)若⊙O的半径为,设

①求关于的函数关系式.

②当时,求的值.

 

【答案】

(1)连接DO,根据垂直的定义可得∠3+∠4=90°,由PD=PE,OD=OB可得∠1=∠2,∠5=∠4,又∠2=∠3可得∠1+∠5=90°,即得∠PDO=90°,从而证得结论;(2)①y=x2+144;②

【解析】

试题分析:(1)连接DO,根据垂直的定义可得∠3+∠4=90°,由PD=PE,OD=OB可得∠1=∠2,∠5=∠4,又∠2=∠3可得∠1+∠5=90°,即得∠PDO=90°,从而证得结论;

(2)①连接PO,在Rt△PDO中PD2=y,DC=4,则PO2=y+(42=y+48,在Rt△PCO中OC="x" PC=8,则可得PO2=x2+(82=x2+192 ,所以有y+48=x2+192,从而求得结果;

②当x=时,可得y=147,即可得到PD、PE的长,由PC=8可得EC的长,又OC=X=,OB=4可得CB=3,在Rt△BCE中,根据正切函数的定义求解即可.

(1)连接DO

 

∵PC⊥BA

∴∠PCB=90°

∴∠3+∠4=90°

又∵PD=PE,OD=OB

∴∠1=∠2,∠5=∠4

又∵∠2=∠3

∴∠1+∠5=90°

∴∠PDO=90°

∴PD⊥OD

∴PD是QO切线;

(2)①连接PO

在Rt△PDO中PD2=y,DC=4

∴PO2=y+(42="y+48"

在Rt△PCO中OC=x,PC=8

∴PO2=x2+(82=x2+192

∴y+48=x2+192

∴y=x2+144

②当x=时,y=147

∴PD==7

∴PE=PD=7 

∵PC=8

∴EC=8-7=

又∵OC=x=,OB=4

∴CB=3 

在Rt△BCE中,tanB===.

考点:圆的综合题

点评:圆的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网