题目内容
一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )
A.1种 B.2种 C.3种 D.6种
在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )
A.向右平移了3个单位长度
B.向左平移了3个单位长度
C.向上平移了3个单位长度
D.向下平移了3个单位长度
若分式的值为0,则的值为( ).
A.2或-1 B.0 C.2 D.-1
如图,在矩形ABCD中,对角线AC,BD 相交于点O,E是边AD的中点,若AC=10,DC=,则BO= ,∠EBD的大小约为 度 分.(参考数据:tan26°34′≈)
某商店举办促销活动,促销的方法是将原价x元的衣服以() 元出售,则下列说法中,能正确表达该商店促销方法的是( )
A.原价减去10元后再打8折
B.原价打8折后再减去10元
C.原价减去10元后再打2折
D.原价打2折后再减去10元
某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A,B两种产品共50件,已知生产1件A种产品需甲种原料9千克,乙种原料3千克,可获利700元;生产1件B种产品需甲种原料4千克,乙种原料10千克,可获利1200元,设工厂生产A,B两种产品可获总利润是y元,其中甲种产品的生产件数是x,
(1)写出y与x之间的函数关系式;
(2)如何安排A,B两种产品的生产件数,使总利润y有最大值,并求出y的最大值。
若关于x的一元一次不等式组有解,则m的取值范围为 .
(12分)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm
(1)请判断DE与⊙O的位置关系,并说明理由;
(2)求图中阴影部分的面积(结果用π表示).
已知抛物线y=–+1的顶点为P,点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连接PA、PD,PD交AB于点E,△PAD与△PEA相似吗?( )
A.始终不相似 B.始终相似
C.只有AB=AD时相似 D.无法确定