题目内容

五个连续整数-2,-1,0,1,2满足下面关系:(-2)2+(-1)2+02=12+22,即前三个连续整数的平方和等于后两个连续整数的平方和,你能否再找到五个连续整数,使它们也具有上面的性质?
设这五个连续整数为x,x+1,x+2,x+3,x+4,
∴x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2
移项得x2=(x+3)2-(x+2)2+(x+4)2-(x+1)2
∴整理得x2-8x-20=0,
∴x1=-2,x2=10,
∴再找到的五个连续整数是10,11,12,13,14.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网