题目内容

    如图l,在四边形A8CD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).

    (温馨提示:在图1中,连结BD,取BD的中点H,连结HE、HF,根据三角形中位线定理,可证得HE=HF,从而∠HFE=∠HEF,再利用平行线的性质,可证得∠BME=∠CNE.)

    问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连结EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论.

    问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,  若∠EFC=600,连结GD,判断△AGD的形状并证明.

(1)       等腰三角形

(2)       直角三角线  

证明:如图连接BD,取BD中点H,连接HF,HE

∴ △AGF是等边三角形.

∴ AF=FD.

∴ GF=FD.

∴ ∠FGI=∠FDG=300

∴ ∠AGD=900

即△AGD是直角三角形

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网