题目内容
如图,在△ABC中,∠C=90°,BC=2m,BD平分∠ABC,CD=DA,
(1)求∠ABC的度数;
(2)求AB的长.
如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF的最小值是________.
直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是( )
A. B. C. D.
甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是( )
A. 北偏西30° B. 南偏西30° C. 南偏东60° D. 南偏西60°
化简的结果是( )
A. –2 B. 2 C. ±2 D. 4
在直角坐标平面里,△ABC三个顶点的坐标分别为A(﹣2,0)、B(0,3)和C(﹣3,2),若以y轴为对称轴作轴反射,△ABC在轴反射下的像是△A'B'C',则C'点坐标为_____.
如图,在矩形ABCD中,边AB的长为3,点E、F,分别在AD,BC上,连接BE,DF,EF,BD,若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为( )
A. 2 B. C. 6 D. 3
格桑的身高是1.6米,她的影长是2米,同一时刻,学校旗杆的影长是10米,则旗杆的高是_____米.
如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.
(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;
(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.
(3)已知线段AB=,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.