题目内容

如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若∠A=30°,AB=8,F是OB的中点,连接DF并延长交⊙O于G,求弦DG的长.

(本题6分)
(1)证明:连接OD.
∵OA=OD,∴∠A=∠1.
∵BA=BC,∴∠A=∠C.
∴∠1=∠C.
∵DE⊥BC,垂足为E,
∴∠2+∠C=90°.
∴∠1+∠2=90°.
∴∠ODE=90°.
∵点D在⊙O上,
∴DE是⊙O的切线.(3分)

(2)解:连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠A=30°,AB=8,
∴DB=4,∠ABD=60°.(4分)
∵OD=OB,
∴△ODB是等边三角形.
∵F是OB的中点,
∴DG⊥AB.
∴FD=FG.(5分)
在Rt△BDF中,∠ABD=60°.
∴DF=BD•sin60°=
∴DG=.(6分)
分析:(1)连接OD,只要证明OD⊥DE即可.
(2)连接BD,证得△ODB是等边三角形后即可得到FD=FG,然后在Rt△BDF中选择合理的边角关系求得DF,进而求得DG的长即可.
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网