题目内容
如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:
(1)△EAB≌△EDC;
(2)∠EFG=∠EGF.
解方程组 (1) (2)
现将三张形状、大小完全相同的平行四边形透明纸片分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形 纸片的每个顶点与小正方形的顶点重合(如图①、图②、图③).
图②矩形(正方形)
,
分别在图①、图②、图③中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.
要求:
(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形.
(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙.
(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.
若一次函数的函数值随的增大而增大,则( )
A. B. C. D.
如图,抛物线与轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(-1,4).
(1)求此抛物线的解析式;
(2)设点D为已知抛物线对称轴上的任意一点,当△ACD面积等于6时,求点D的坐标;
(3)点P在线段AM上,当PC与y轴垂直时,过点P作轴的垂线,垂足为E,将△PCE沿直线CB翻折,使点P的对应点P'与P、E、C处在同一平面内,请求出P'坐标,并判断点P'是否在抛物线上.
如图是一个高速公路隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=8米,净高CD=8米,则此圆的半径OA为______.
如果一个正多边形的每一个外角都是36°,那么这个多边形的边数是( )
A. 10 B. 11 C. 12 D. 13
先化简,再求值:1-,其中x=-1.
工人师傅用一块长为10分米,宽为8分米的矩形铁皮(厚度不计)制作一个无盖的长方体容器,如图所示,需要将四角各裁掉一个小正方形.
(1)若长方体容器的底面面积为48平方分米,求裁掉的小正方形边长是多少分米?
(2)若要求制作的长方体容器的底面长不大于底面宽的3倍,并将容器内部进行防锈处理,侧面每平方分米的防锈处理费用为0.5元,底面每平方分米的防锈处理费用为2元,问裁掉的正方形边长是多少分米时,总费用最低,最低费用为多少元?