题目内容

如图,AB是⊙O的直径,AC切⊙O于点A,AD是⊙O的弦,OC⊥AD于F交⊙O于点E,连接DE、BE、BD、AE.
(1)求证:∠ACO=∠BED;
(2)连接CD,证明:直线CD是⊙O的切线;
(3)如果DEAB,AB=2cm,求四边形AEDB的面积.
(1)证明:∵AB是⊙O的直径,CA切⊙O于点A,
∴∠CAO=90°,
∴∠ACO+∠AOC=90°,
又∵OC⊥AD,
∴∠OFA=90°,
∴∠AOC+∠BAD=90°,
∴∠ACO=∠BAD,
又∵∠BED=∠BAD,
∴∠ACO=∠BED;

(2)连接CD、OD,
∵OC⊥AD,
AE
=
DE

∴∠DOC=∠AOC,
在△OAC和△ODC中,
OC=OC
∠AOC=∠DOC
OA=OD

∴△OAC≌△ODC(SAS),
∴∠ODC=∠OAC,
又∵CA切⊙O于点A,
∴∠OAC=90°,
∴∠ODC=90°,
∴CD是⊙O的切线;

(3)∵OC⊥AD,
AE
=
DE

又∵DEAB,
∴∠BAD=∠EDA,
BD
=
AE

BD
=
DE
=
AE

∴∠DBE=∠ABE=∠BAD,AE=BD=DE,
又∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠BAD=30°,
∴BD=
1
2
AB=1cm,DE=1cm,
在Rt△ABD中,由勾股定理得:AD=
3

过点D作DH⊥AB于H,
∵∠HAD=30°,
∴DH=
1
2
AD=
3
2

∴四边形AEDB的面积为:
1
2
(DE+AB)•DH
1
2
(DE+AB)•DH
=
1
2
×(1+2)×
3
2
=
3
3
4
(cm2).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网