题目内容
已知二次函数y=ax2-2ax+1(a<0)图象上三点A(-1,y1),B(2,y2)C(4,y3),则y1、y2、y3的大小关系为
- A.y1<y2<y3
- B.y2<y1<y3
- C.y1<y3<y2
- D.y3<y1<y2
D
分析:求出抛物线的对称轴,求出A关于对称轴的对称点的坐标,根据抛物线的开口方向和增减性,即可求出答案.
解答:y=ax2-2ax+1(a<0),
对称轴是直线x=-
=1,
即二次函数的开口向下,对称轴是直线x=1,
即在对称轴的右侧y随x的增大而减小,
A点关于直线x=1的对称点是D(3,y1),
∵2<3<4,
∴y2>y1>y3,
故选D.
点评:本题考查了学生对二次函数图象上点的坐标特征的理解和运用,主要考查学生的观察能力和分析能力,本题比较典型,但是一道比较容易出错的题目.
分析:求出抛物线的对称轴,求出A关于对称轴的对称点的坐标,根据抛物线的开口方向和增减性,即可求出答案.
解答:y=ax2-2ax+1(a<0),
对称轴是直线x=-
即二次函数的开口向下,对称轴是直线x=1,
即在对称轴的右侧y随x的增大而减小,
A点关于直线x=1的对称点是D(3,y1),
∵2<3<4,
∴y2>y1>y3,
故选D.
点评:本题考查了学生对二次函数图象上点的坐标特征的理解和运用,主要考查学生的观察能力和分析能力,本题比较典型,但是一道比较容易出错的题目.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |