题目内容
求证:FD=BE.
分析:根据中心对称得出OB=OD,OA=OC,求出OF=OE,根据SAS推出△DOF≌△BOE即可.
解答:证明:∵△ABO与△CDO关于O点中心对称,
∴OB=OD,OA=OC,
∵AF=CE,
∴OF=OE,
∵在△DOF和△BOE中
∴△DOF≌△BOE(SAS),
∴FD=BE.
∴OB=OD,OA=OC,
∵AF=CE,
∴OF=OE,
∵在△DOF和△BOE中
|
∴△DOF≌△BOE(SAS),
∴FD=BE.
点评:本题考查了全等三角形的性质和判定,中心对称的应用,主要考查学生的推理能力.
练习册系列答案
相关题目