题目内容
用因式分解法解下列方程:
(1)x2-12x+35=0;
(2)(3x-1)2-4=0;
(3)3(2x-3)2-2(2x-3)=0;
(4)9(x+2)2=16(2x-5)2
(5)(x+3)2-5(x+3)+6=0.
(1)x2-12x+35=0;
(2)(3x-1)2-4=0;
(3)3(2x-3)2-2(2x-3)=0;
(4)9(x+2)2=16(2x-5)2
(5)(x+3)2-5(x+3)+6=0.
(1)(x-5)(x-7)=0
∴x1=5,x2=7.
(2)(3x-1+2)(3x-1-2)=0
(3x+1)(3x-3)=0
∴x1=-
,x2=1.
(3)(2x-3)[3(2x-3)-2]=0
(2x-3)(6x-11)=0
∴x1=
,x2=
.
(4)[3(x+2)+4(2x-5)][3(x+2)-4(2x-5)]=0
(3x+6+8x-20)(3x+6-8x+20)=0
(11x-14)(-5x+26)=0
∴x1=
,x2=
.
(5)(x+3-2)(x+3-3)=0
x(x+1)=0
∴x1=0,x2=-1.
∴x1=5,x2=7.
(2)(3x-1+2)(3x-1-2)=0
(3x+1)(3x-3)=0
∴x1=-
| 1 |
| 3 |
(3)(2x-3)[3(2x-3)-2]=0
(2x-3)(6x-11)=0
∴x1=
| 3 |
| 2 |
| 11 |
| 6 |
(4)[3(x+2)+4(2x-5)][3(x+2)-4(2x-5)]=0
(3x+6+8x-20)(3x+6-8x+20)=0
(11x-14)(-5x+26)=0
∴x1=
| 14 |
| 11 |
| 26 |
| 5 |
(5)(x+3-2)(x+3-3)=0
x(x+1)=0
∴x1=0,x2=-1.
练习册系列答案
相关题目