题目内容
(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
(本题满分8分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)画线段AD∥BC且使AD =BC,连接CD;
(2)线段AC的长为 ,CD的长为 ,AD的长为 ;
(3)△ACD为 三角形,四边形ABCD的面积为 ;
(4)若E为BC中点,则tan∠CAE的值是 .
(2011广西崇左,24,14分)(本小题满分14分)如图,在边长为8的正方形ABCD
中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作圆O的切线交边BC于点N.
(1) 求证:△ODM∽△MCN;[来源:学+科+网]
(2) 设DM=x,求OA的长(用含x的代数式表示);
(3) 在点O运动的过程中,设△CMN的周长为p,试用含x的代数式表示p,你能发现怎样的结论?