题目内容

在数学中,为了简便,记
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1.则
2010
k=1
k-
2011
k=1
k+
2011!
2010!
=
 
分析:根据给出的运算规律将原式转化为有理数混合运算,再根据其运算顺序和法则分别进行计算即可.
解答:解:∵
n
k=1
k=1+2+3+…+(n-1)+n
,n!=n×(n-1)×(n-2)×…×3×2×1,
2010
k=1
k-
2011
k=1
k+
2011!
2010!

=(1+2+3…+2008+2009+2010)-(1+2+3+…+2009+2010+2011)+
2011×2010×2009…×3×2×1
2010×2009×2008…×3×2×1

=1+2+3…+2008+2009+2010-1-2-3-…-2009-2010-2011+2011,
=0.
故答案为:0.
点评:本题主要考查了有理数的混合运算,在解题时要注意找出规律列出式子计算是解本题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网