题目内容
分析:根据正方形的性质可得点C、点A关于BD对称,从而连接AE,则AE与BD交点即是点P的位置,利用勾股定理求解AE即可得出答案.
解答:
解:∵点C、点A关于BD对称,
∴AE与BD的交点即是点P的位置,此时满足PE+PC的值最小,
又∵AB=BC=BE+EC=12,
∴在RT△ABE中,AE=AP+PE=PC+PE=
=13.
即PE+PC的最小值为13.
∴AE与BD的交点即是点P的位置,此时满足PE+PC的值最小,
又∵AB=BC=BE+EC=12,
∴在RT△ABE中,AE=AP+PE=PC+PE=
| AB2+BE2 |
即PE+PC的最小值为13.
点评:此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用,利用轴对称的知识找出最短路径是解题关键,难度一般.
练习册系列答案
相关题目