题目内容
如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是________.
x=180°+z-y
分析:根据两直线平行,同旁内角互补求出∠CEF,再根据两直线平行,内错角相等即可得到∠x=∠AEF.
解答:∵CD∥EF,
∴∠CEF=180°-y,
∵AB∥EF,
∴∠x=∠AEF=∠z+∠CEF,
即x=180°+z-y.
故答案为:x=180°+z-y.
点评:本题主要利用平行线的性质求解,熟练掌握性质是解题的关键.
分析:根据两直线平行,同旁内角互补求出∠CEF,再根据两直线平行,内错角相等即可得到∠x=∠AEF.
解答:∵CD∥EF,
∴∠CEF=180°-y,
∵AB∥EF,
∴∠x=∠AEF=∠z+∠CEF,
即x=180°+z-y.
故答案为:x=180°+z-y.
点评:本题主要利用平行线的性质求解,熟练掌握性质是解题的关键.
练习册系列答案
相关题目